Power to the pee-ple

尿液可以用作实用的电力来源吗?客座博客作者Xavier Alexis Walterdiscusses a recent advance在扩大实验性微生物燃料时,有望做到这一点的细胞。

MCF特色图像

探索与发现

一名地质生物学家以背景为背景,我的兴趣始终是对自然分层微生物生态系统的研究。我对特定生态系统的不同生物隔室之间的关系充满热情,我想了解生物如何相互适应其环境以及他们随后如何塑造周围环境。

在研究分层的微生物生态系统的同时,我一直在脑海中建立人工复杂的微生物“生态系统”,这可以帮助减少人类活动对环境的影响。由于微生物燃料电池(MFC)是一种生物电化学技术,将有机废物转化为电力,因此该研究领域立即引起了我的兴趣。

虽然第一个MFC该研究领域是由M. C. Potter于1911年建造的,在90年代才真正发展。因此,这是一个相对年轻的研究领域,有很多探索和发现的机会!

How does this work?

The MFC is a technology in which microorganisms employ an electrode (the anode) as the end-terminal electron acceptor in their anaerobic respiration. This results in the direct transformation of chemical energy (reduced organic matter) into electrical energy, which in turn means that anything from wastewater to urine can be used as fuel.

MFC

该技术的内在特征是:低功率(与已建立的技术相比),这是广泛的有机物(否则被认为是废物),可以用作燃料,低财政和维护成本,耐用性和稳健性。

Exploitable power is reached when assembling multiple individual MFC units into stacks. In that context, the size of individual MFCs plays an important role in the performance of the collective.

尽管可以扩大单位,但这会影响功率密度。

尽管可以扩大单位,但这会影响功率密度。这主要是由于扩散限制和亚最佳体积与表面区域比率,这意味着降低了功率密度。

迄今为止,获得高功率密度的唯一方法是采用小型MFC,从而最大程度地利用微生物生物膜转移电子的活性表面。但是,要达到可利用的功率,需要大量的单位。

Hence, being able to increase the size of the units with limited power density losses is a major obstacle to retaining the technology’s deployment at the industrial scale for out-of-the-lab applications.

扩大在不损失能量

To overcome the power density losses due to size increase, our main goal became to increase the bio-interfaces, as a fixed ratio to that of smaller units. Indeed, having multiple microenvironments means that increasing unit size does not increase diffusion limitations, since at the electroactive scale, all interfaces and diffusion distances would be kept at a minimum.

但是,为了最大程度地提高固定体积的生物界面,需要一种新颖的MFC设计。发电主要属于redox potential在阳极和阴极之间。因此,这些氧化还原梯度(在阳极和阴极之间)的繁殖是挑战。

尿电

Having in mind the need for simplicity and low cost, we were inspired bystratified microbial ecosystems。For example, when certain lakes become stratified during the summer, we observe that the various microbial communities are stratified along the oxic/anoxic interface of the water column, depending on their specific metabolisms (along a gradient of elements at different redox states).

从该观察结果开始,我们重新创建了一个环境,在这种环境中,微生物的活性使水柱(在我们的情况下尿液)具有自分层,具有冰毒上部和缺氧的底部。

通过这样做,这两个液体层之间产生了氧化还原电位的差异。然后可以将许多阴极放置在尿液柱的上部,而许多阳极可能占据底部。

结果是一种新型的MFC设计,其所有阳极及其大多数阴极被浸入同一电解质中 - 没有短路。已显示获得的简化且廉价的设计允许扩大功率密度损失有限。所获得的堆栈还显示出稳定且功能强大:这种设计的功率在现有的更复杂的设计范围内。

What could the future bring?

Over the last three decades, research in MFCs has focused on:

1)提高单个单元的功率密度
2)降低每个单元的成本
3)扩大潜在燃料
4) demonstrating the implementation of this biotechnology into practical implementations

这项研究的未来在于追求上述要点。但是,可以将MFC缩放以匹配其预期使用,从而在应用程序方面打开了新的途径。

现在可以在实际使用条件下对技术的部署进行测试:作为离网,偏远区域的电源;作为治疗人类有机废物的能源有效方法;或作为自给自足的生物传感器。

View the latest posts on the On Biology homepage

Comments